

Rome, Hotel NH Collection - Vittorio Veneto

May 5-6, 2022

AlL President: P. Toro Coordinators: A.M. Carella, S. Amadori

UNDER THE AUSPICES OF:

SIES

EXPANDING HORIZONS FOR IMMUNOTHERAPY IN ONCO-HEMATOLOGY

• CAR-T in Indolent NHL

Alessandro Pulsoni

AlL President: P. Toro Coordinators: A.M. Carella, S. Amadori

Disclosures of Alessandro Pulsoni

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
ROCHE					х	х	
MERK SHARP &DOME					x		
PFIZER					x	х	
SANDOZ					х		
TAKEDA					x	x	
GILEAD					x	x	
BRISTOL MEIER SQUIBB						x	
JANSSEN					x		

Relapsed / refractory DLBCL:

Unmet clinical need,

• CAR-T changed the prognosis of relapsed patients

Indolent NHL:

- Tendency to multiple recurrences, frequently responsive to the multiple available treatment strategies, with prolonged survival.
- Cases with worse prognosis identifiable by clinical and biological markers (POD24, TMTV, metabolic response, MRD..) requires a more effective approach

CAR-T could play a role in iNHL treatment scenario if:

- Higher efficacy
- Manageable toxicity, compared to the already available and future strategies

AlL President: P. Toro Coordinators: A.M. Carella, S. Amadori

Characteristic	Patients Enrolled (N=38)		Patients Treated (N = 28)		
	Follicular Lymphoma (N=15)	Diffuse Large B-Cell Lymphoma (N=23)	Follicular Lymphoma (N=14)	Diffuse Large B-Cell Lymphoma (N=14)	
Age — yr					
Median	62	56	59	58	
Range	43-72	25-77	43-72	25-77	
Female sex — no. (%)	8 (53)	7 (30)	7 (50)	3 (21)	
Previous therapies					
Median	5	3	5	3	
Range	2–10	1-8	<mark>2–10</mark>	1-8	
Advanced stage disease — no. (%)*	13 (87)	17 (74)	12 (86)	9 (64)	
Bone marrow involved — no./total no. (%)	4/15 (27)	4/21 (19)	4/14 (28)	3/14 (21)	
Elevated lactate dehydrogenase — no. (%)	10 (67)	16 (70)	9 (64)	8 (57)	
ECOG performance-status score†					
Median	0	1	0	1	
Range	0-1	0-1	0–1	0-1	
Refractory diffuse large B-cell lymphoma — no. (%)‡	—	21 (91)	-	12 (86)	
Double refractory follicular lymphoma — no. (%)∬	9 (60)	—	8 (57)	—	
Previous stem-cell transplantation — no. (%)					
Autologous	3 (20)	9 (39)	3 (21)	7 (50)	
Allogeneic	1 (7)	0	1 (7)	0	

N ENGL J MED 2017

ORIGINAL ARTICLE

Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas

Stephen J. Schuster, M.D., Jakub Svoboda, M.D., Elise A. Chong, M.D., Sunita D. Nasta, M.D., Anthony R. Mato, M.D., Özlem Anak, M.D.,
Jennifer L. Brogdon, Ph.D., Iulian Pruteanu-Malinici, Ph.D., Vijay Bhoj, M.D., Ph.D., Daniel Landsburg, M.D., Mariusz Wasik, M.D., Bruce L. Levine, Ph.D.,
Simon F. Lacey, Ph.D., Jan J. Melenhorst, Ph.D., David L. Porter, M.D., and Carl H. June, M.D.

Complete remission occurred in 6 of 14 patients with diffuse large B-cell lymphoma (**43%**; 95% CI, 18 to 71) and 10 of 14 patients with follicular lymphoma (**71%**; 95% CI, 42 to 92).

Sustained remissions were achieved, and at a median follow-up of 28.6 months, **86%** of patients with diffuse large B-cell lymphoma who had a response (95% CI, 33 to 98) and **89%** of patients with follicular lymphoma who had a response (95% CI, 43 to 98) had maintained the response

Adverse Event			Grade	Total Events	Grade 3 or Higher		
	1	2	3	4	5		
						number (p	percent)
Cytokine release syndrome	0	11	4	1	0	16 (57)	5 (18)
Neurotoxicity	4	4	1	1	1	11 (39)	3 (11)
Encephalopathy	0	0	1	1	1	3 (27)	
Delirium	0	2	0	0	0	2 (18)	
Tremor	2	0	0	0	0	2 (18)	
Cognitive disturbance	1	0	0	0	0	1 (5)	
Confusion	0	1	0	0	0	1 (5)	
Involuntary movements	1	0	0	0	0	1 (5)	
Memory impairment	0	1	0	0	0	1 (5)	

Severe cytokine-release syndrome occurred in 5 patients (18%). **Serious encephalopathy** occurred in 3 patients (11%); 2 cases were self-limiting and 1 case was fatal.

AIL President: P. Toro Coordinators: A.M. Carella, S. Amadori

Nature Medicine | VOL 28 | Februar y 2022 | 325–332

medicine	ARTICLES https://doi.org/10.1038/s41591-021-01622-0
	Check for update:

Tisagenlecleucel in adult relapsed or refractory follicular lymphoma: the phase 2 ELARA trial

Nathan Hale Fowler ^{1,2}, Michael Dickinson³, Martin Dreyling⁴, Joaquin Martinez-Lopez⁵, Arne Kolstad⁶, Jason Butler⁷, Monalisa Ghosh⁸, Leslie Popplewell⁹, Julio C. Chavez¹⁰, Emmanuel Bachy¹¹, Koji Kato¹², Hideo Harigae¹³, Marie José Kersten¹⁴, Charalambos Andreadis¹⁵, Peter A. Riedell¹⁶, P. Joy Ho¹⁷, José Antonio Pérez-Simón¹⁸, Andy I. Chen¹⁹, Loretta J. Nastoupil⁰¹, Bastian von Tresckow ^{120,21}, Andrés José María Ferreri²², Takanori Teshima¹²³, Piers E. M. Patten^{24,25}, Joseph P. McGuirk²⁶, Andreas L. Petzer²⁷, Fritz Offner²⁸, Andreas Viardot²⁹, Pier Luigi Zinzani^{30,31}, Ram Malladi³², Aiesha Zia³³, Rakesh Awasthi³⁴, Aisha Masood³⁵, Oezlem Anak³³, Stephen J. Schuster^{36,38} and Catherine Thieblemont^{(0)37,38}

EMA approved for the treatment of adult patients with R/R FL after 2 or more lines of therapy

Liso-cel Axi-cel Tisagenlecleucel ZUMA-1 JULIET TRANSCEND (N = 108 infused)(N = 108 infused) (N = 294 infused) CAR α CD19 α CD19 α CD19 **CD28** CD28 **CD28** Transmembrane domain 4-1BB CD28 4-1BB Co-stimulatory doman CD3C CD3C CD3ζ T-cell activation domain Leukapheresis Fresh product Cryopreserved product Fresh product Allowed Allowed Outpatient administration Not allowed Bridging therapy, % Not allowed 92% 59% Lymphodepletion Cy/Flu 250/25 mg/m² x 3d Cy/Flu 300/30 mg/m² x 3d Cy/Flu 500/30 mg/m² × 3d Bendamustine 90 mg/m² x 2d chemotherapy

Summary of CAR T-Cell Pivotal Studies in DLBCL

Table 1 | Baseline demographic and disease characteristics of all treated patients

Parameter	Infused patients, n = 97
Median age (IQR), years	57.0 (49-64)
≥65 Years, n (%)	24 (24.7)
Male, n (%)	64 (66.0)
Female, n (%)	33 (34)
ECOG PS \geq 1 before infusion, n (%)	41 (43.3)
Stage at study entry III-IV, n (%)	83 (85.6)
Bone marrow involvement at study entry, n (%)	37 (38.1)
Bulky disease at baseline, n (%)	62 (63.9)
FLIPI high (\geq 3) at study entry, n (%)	58 (59.8)
Median no. of previous therapies (range)	4 (2-13)
>4 lines of therapy, n (%)	27 (27.8)
POD24 from first anti-CD20 mAb-containing	61 (62.9)
therapy, n (%)	
Previous antineoplastic therapy, n (%)	
Anti-CD20 mAb	97 (100)
Alkylating agents	97 (100)
Anti-CD20 mAb + alkylating agent (same or different regimen)	97 (100)
PI3K inhibitors	20 (20.6)
Lenalidomide	21 (21.6)
Lenalidomide + rituximab	16 (16.5)
Previous therapy to which the disease was refractory	,ª n (%)
Anti-CD20 mAb	84 (86.6)
Alkylating agents	69 (71.1)
Anti-CD20 mAb + alkylating agent combination (same regimen)	61 (62.9)
Anthracyclines	43 (44.3)
Lenalidomide	18 (18.6)
Lenalidomide + anti-CD20 mAb (same regimen)	18 (18.6)
PI3K inhibitors	14 (14.4)
Refractory disease to last line of therapy, n (%)	76 (78.4)
Best response SD/PD	54 (55.7)
Relapse within 6 months	22 (22.7)
Previous autologous HSCT, n (%)	35 (36.1)
Relapsed ≤12 months after HSCT, n (%)	15 (15.5)
Refractory ^a to at least two regimens, n (%)	69 (71.1)
Double refractory, ^b n (%)	66 (68.0)

Coordinators: A.M. Carella, S. Amadori

ELARA Study Design

· Bridging therapy was allowed and was followed by disease re-evaluation before tisagenlecleucel infusion

Timing of planned analyses

Planned analyses	Minimum follow-up from infusion	Median follow-up
Interim analysis	≈50 patients with ≥6 months follow-up	10 months
Primary analysis	90 patients with ≥6 months follow-up	11 months
Extended follow-up analysis	90 patients with ≥12 months follow-up	17 months

AlL President: P. Toro Coordinators: A.M. Carella, S. Amadori

- Median follow-up was 17 months (range, 10-26 months)
- 17 patients (18%) were treated in the outpatient setting

	Patient	atients (N=97)		
Adverse Events of Special Interest within 8 Weeks ^a	All Grades n (%)	Grade ≥3 n (%)		
All adverse events	94 (96.9)	69 (71.1)		
CRS ^{b,c}	47 (48.5)	0		
All nervous system disorders ^d	36 (37.1)	3 (3.1)		
ICANS	4 (4.1)	1 (1.0)		
Infections	18 (18.6)	5 (5.2)		
Tumor lysis syndrome	1 (1.0)	1 (1.0)		
Hypogammaglobulinemia	9 (9.3)	0		
Hematologic disorders including cytopenias				
Neutropenia ^{e,f}	32 (33.0)	31 (32.0)		
Anemia ^e	24 (24.7)	13 (13.4)		
Thrombocvtopeniae	16 (16.5)	9 (9.3)		

CRS

Events Within 8 Weeks of Infusion, a %	All Patients (N=97)
Patients with CRS (Lee scale) ¹	48.5
Maximum CRS grade	
Grade 1	27.8
Grade 2	20.6
Grade 3/4	0
Median onset of CRS, days	4.0
Min-Max	1-14
Median duration of CRS, days	4.0
Min-Max	1-24

CRS management

Events Within 8 Weeks of Infusion, n (%)	Patients with CRS (n=47)
Concurrent infections	7 (14.9)
Admitted to ICU	4 (8.5)
Median duration of ICU stay, days	4
Tocilizumab	16 (34.0)
Corticosteroids	3 (6.4)
Hypotension that required IV fluids and/or vasopressors	19 (40.4)
One vasopressor administered	3 (6.4)
High-dose vasopressors	0
Hypoxia observed	9 (19.1)
Low-flow oxygen supplementation	9 (19.1)

AlL President: P. Toro Coordinators: A.M. Carella, S. Amadori

LEUKEMIA2022 May 5-6, 2022

• Median PFS was 29.5 months (95% CI, 17.9-NE)

• Among patients who achieved CR, 12- month PFS was 85.5% (95% CI, 74-92) and estimated DOR rate at 9 months was 86.5% (95% CI, 75-93)

AlL President: P. Toro Coordinators: A.M. Carella, S. Amadori

Kaplan–Meier curves for patients with r/r FL who received tisagenlecleucel infusion. a, DOR, b, PFS, c, OS and d, time to next anti-lymphoma treatment.

LEUKEMIA2022 May 5-6, 2022 All President: P. Toro

Coordinators: A.M. Carella, S. Amadori

ELARA: high-risk subgroups

		n	CRR %	ı				
Overall		94	69.1	1		-	-	
Prior therapy	<5 lines	67	73.1			_	-	
	≥5 lines	27	59.3	1			_	
High TMTV (>510 ml) ^{a,b}	No	72	76.4	1				
	Yes	20	40.0	. —	-			
POD24	No	33	87.9	1				
	Yes	61	59.0	1	_		-	
			0	20	40	60	80	100

	Descriptiv	Multivariate Analysis	
Disease Characteristic	High-Risk 12-Month PFS (%)	Low-Risk 12-Month PFS (%)	Hazard Ratio (95% Cl)
POD24	60.8	77.9	2.3 (1.0-5.3)
TMTV ^a	54.5	68.5	2.5 (1.3-5.6)

Although POD24 and high TMTV (>510 ml) were associated with less favorable PFS in the multivariate analysis of high-risk factors, *efficacy in these high-risk subgroups was still superior to the current non CAR-T standards of care*

Conclusions

Overall patient population

- At a median follow-up of 17 months in patients with r/r FL and ≥2 prior lines of therapy, tisagenlecleucel demonstrated
 - High ORR (86.2%) and CRR (69.1%)
 - Durable responses and promising 12-month PFS (67.0%)
- · Safety data are consistent with the established favorable tisagenlecleucel safety profile

High-risk subgroups

- · Tisagenlecleucel induced high rates of durable responses among patients with high-risk disease
- In multivariate analyses, POD24 and TMTV appeared to impact PFS vs the low-risk group, but is still superior to the current non-CAR-T cell therapy standards of care for patients with r/r FL¹⁻¹¹
 - POD24: 12-month PFS 60.8%
 - High TMTV: 12-month PFS 54.5%
- Further exploration of the prognostic value of high TMTV in the CAR-T cell therapy setting is warranted

Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial

Caron A Jacobson, Julio C Chavez, Alison R Sehgal, Basem M William, Javier Munoz, Gilles Salles, Pashna N Munshi, Carla Casulo, David G Maloney, Sven de Vos, Ran Reshef, Lori A Leslie, Ibrahim Yakoub-Agha, Olalekan O Oluwole, Henry Chi Hang Fung, Joseph Rosenblatt, John M Rossi, Lovely Goyal, Vicki Plaks, Yin Yang, Remus Vezan, Mauro P Avanzi, Sattva S Neelapu

Lancet Oncol 2022; 23: 91-103

Summary of CAR T-Cell Pivotal Studies in DLBCL

Key ZUMA-5 Eligibility Criteria

- R/R FL (Grades 1–3a) or MZL (nodal or extranodal)^a
- ≥2 Prior lines of therapy that must have included an anti-CD20 mAb combined with an alkylating agent^b

Primary Endpoint

 ORR (IRRC-assessed per the Lugano classification¹)

Key Secondary Endpoints

- CR rate (IRRC-assessed)
- Investigator-assessed ORR^a
- DOR, PFS, OS
- AEs
- · CAR T-cell and cytokine levels

Efficacy analyses are reported in the 110 efficacy-eligible patients (86 with FL; 24 with MZL)^a

- The median follow-up for patients with FL was 30.9 months (range, 24.7–44.3)
- The median follow-up for patients with MZL was 23.8 months (range, 7.4–39.4)

Safety data are reported for all 149 patients treated with axi-cel (124 with FL; 25 with MZL)

PFS and OS

- Median OS was not yet reached in efficacy-eligible patients with FL or MZL
- Among patients with FL, 3 deaths occurred after Month 24^a; no disease progression events occurred after Month 24

DOR and TTNT

- At data cutoff, 57% of efficacy-eligible patients with FL (49 of 86) and 50% of patients with MZL (12 of 24) had ongoing responses
 - Of patients who achieved a CR, 68% of patients with FL (46 of 68) and 73% of patients with MZL (11 of 15) had ongoing responses

High risk subgroups

Efficacy Outcomes In Patients With FL by POD24 Status

	Follicular Lymphoma (n=78)ª				
Parameter (95% CI)	With POD24 (n=49)	Without POD24 (n=29)			
Median DOR, months	38.6 (14.5–NE)	NR (24.7–NE)			
24-month rate, %	61.1 (44.3–74.3)	72.4 (50.2–85.9)			
Median PFS, months	39.6 (13.1–NE)	NR (25.7–NE)			
24-month rate, %	57.3 (41.2–70.4)	73.0 (51.1–86.2)			
Median OS, months	NR (39.6–NE)	NR (NE–NE)			
24-month rate, %	77.6 (63.1–86.9)	85.9 (66.7–94.5)			

- Patients with FL who had POD24 benefitted from axi-cel, with estimated medians and 24-month rates of DOR and PFS consistent with all efficacy-eligible patients
 - Medians of DOR and PFS among patients without POD24 were not yet reached at data cutoff

AlL President: P. Toro Coordinators: A.M. Carella, S. Amadori

PFS Rate at 24 Months in KeyFLSubgroups

PFS Rate at 12 Months in KeyMZLSubgroups

		No. of Patients	No. of Patients At Risk		PFS Rate (95% CI)			No. of Patients	No. of Patients At Risk		PFS Rate (95% CI)
Overall		86	27		63 (52-73)	Overall		24	10		61 (37–79)
Age, years	<65 ≥65	55 31	17 10		65 (50-76) 61 (41-77)	Age, years	<65 ≥65	11 13	3 7		63 (22-87) 58 (27-80)
Sex	Male Female	48 38	13 14		59 (43-72) 69 (51-82)	Sex	Male Female	11 13	3 7		49 (17–75) 73 (37–90)
ECOG performance status	0	51 35	17 10		67 (52–79) 56 (36–72)	ECOG performance status	0	14 10	7 3		74 (39–91) 47 (15–74)
High tumor burden (GELF criteria)	Yes No	42 44	10 17		55 (37–69) 71 (55–83)	High tumor burden (GELF criteria)	Yes No	10 14	4		53 (17–79) 67 (34–86)
Relapse/refractory subgroup	Relapsed Refractory	23 63	8 19		73 (49–87) 60 (46–72)	Relapse/refractory subgroup	Relapsed Refractory	6 18	2 ⊢ 8		50 (6-85) 66 (39-83)
Number of prior lines of therapy	2 3 ≥4	26 20 40	11 3 13		73 (51–86) 45 (22–66) 66 (48–79)	Number of prior lines of therapy	2 3 ≥4	8 7 9	3 5 2 ⊢		71 (26–92) 83 (27–98) 38 (9–67)
Prior stem cell transplantation	Yes No	21 65	7 20		85 (61–95) 56 (42–68)	Prior stem cell transplantation	Yes No	3 21	1 H		50 (1-91) 64 (38-81)
Prior lenalidomide	Yes No	27 59	6 21		58 (36–75) 66 (51–77)	Prior lenalidomide	Yes No	8 16	4		75 (32–93) 55 (26–77)
Prior PI3K inhibitor	Yes No	28 58	9 18		56 (35–73) 67 (53–78)	Prior PI3K inhibitor	Yes No	9 15	4		63 (23-86) 61 (29-82)
Prior BTK inhibitor	Yes No	6 80	2 ⊢ 25		50 (11-80) 64 (52-74)	Prior BTK inhibitor	Yes No	12 12	4		61 (27–84) 64 (30–85)
			0 2	20 40 60 80 100					0	20 40 60 80 100	
				PFS Rate (%)						PFS Rate (%)	

the PFS rate at 12 months appeared to be consistent among key subgroups, including prior treatment with a BTK inhibitor

Safety

Most common Grade ≥3 AEs were neutropenia (33%) and anemia (25%)

Grade ≥3 cytokine CRS and NEs occurred in 7% of patients (6% FL; 8% MZL) and 19% of patients (15% FL; 36% MZL), respectively

Most CRS cases (120 of 121) and NEs (82 of 87) of any grade resolved by data cutoff^a

Nearly half of NEs (49%) resolved ≤2 weeks after onset; most NEs (76%) resolved ≤8 weeks after onset

Grade ≥3 cytopenias present ≥30 days post-infusion were reported in 34% of patients (33% FL; 36% MZL), most commonly neutropenia in 29% of patients (27% FL; 36% MZL)

	Follicular L (N=1	ymphoma 24)	Marginal Zone (N=:	e Lymphoma 25)	All Patients (N=149)	
AE, n (%)	Any Grade	Grade ≥3	Any Grade	Grade ≥3	Any Grade	Grade ≥3
Any AE	27 (22)	14 (11)	11 (44)	6 (24)	38 (26)	20 (13)
Serious AE	11 (9)	11 (9)	4 (16)	4 (16)	15 (10)	15 (10)
Cytopenia	8 (6)	4 (3)	3 (12)	3 (12)	11 (7)	7 (5)
Infection	18 (15)	7 (6)	7 (28)	4 (16)	25 (17)	11 (7)
CRS	0 (0)	0 (0)	2 (8)	0 (0)	2 (1)	0 (0)
Neurologic event	0 (0)	0 (0)	2 (8)	0 (0)	2 (1)	0 (0)
Hypogammaglobulinemia	2 (2)	0 (0)	2 (8)	0 (0)	4 (3)	0 (0)
Tumor lysis syndrome	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)

Late toxicity

Grade 5 AEs occurred in 6 patients after the data cutoff of the primary analysis^b

- Grade 5 infectious AEs occurred in 5 patients: 1 COVID-19 (FL, Day 717, unrelated), 1 COVID-19 pneumonia (FL, Day 780, related to axi-cel), 1 <u>PML^c</u> (FL, Day 697, related to axi-cel and CC) and 2 sepsis (FL, Day 1204; MZL, Day 139; both unrelated)
- Acute bilineal leukemia occurred in 1 patient (FL, Day 623, CC related)

Detectable B Cells and CAR T Cells Over Time in Patients With FL and Ongoing Responses at 24 Months

 The majority of patients with FL and an ongoing response had detectable B cells by Month 18; by Month 24, less than half had low levels of detectable CAR gene-marked cells

- The levels of CAR gene-marked T cells were inversely correlated with that of B cells at each timepoint post-infusion

п

Authors' Conclusions

- With long-term follow-up in ZUMA-5, axi-cel demonstrated substantial and continued benefit in patients with R/R iNHL
 - In FL, high response rates translated to durability after 31 months median follow-up
 - Median DOR was 38.6 months, and 57% of efficacy-eligible patients were in ongoing response at data cutoff
 - Median PFS was nearly 40 months, and median OS was not yet reached
 - In MZL, efficacy outcomes appeared to improve with longer follow-up (median, 24 months)
 - Median DOR and OS not yet reached; median PFS was 17.3 months
 - 50% of patients were in ongoing response at data cutoff
- Axi-cel maintained a manageable safety profile in iNHL, with no new safety signals
- Results of the long-term pharmacokinetic analysis suggest that functional CAR T-cell persistence may not be required for long-term remissions in patients with FL, consistent with prior findings in aggressive lymphomas¹
- Axi-cel is a highly effective therapeutic approach for patients with R/R iNHL

Considering these results, in terms of efficacy, duration of response and toxicity, *Where to fit CAR-T in the treatment program of iNHL?*

Should CAR-T be confined to the third or subsequent treatment line?

A Comparison of Clinical Outcomes from Updated ZUMA-5 (Axicabtagene Ciloleucel) and the International SCHOLAR-5 External Control Cohort in Relapsed/Refractory Follicular Lymphoma Palomba M Lia, et al.

Abstract #3543 - ASH 2021

The international SCHOLAR-5 cohort data were extracted for r/r FL patients who initiated a third or higher line of therapy (LoT) on or after July 2014

Methods: LoT Selection for Real-World Data

- For the real-world data, lines that were eligible for inclusion in the analysis were entered into a random selection. A single LoT for each patient was included in the analysis set
- The SCHOLAR-5 and ZUMA-5 cohorts were balanced (SMD < 0.1) for patient characteristics through propensity scoring on prespecified prognostic factors and standardized mortality ratio weighting¹
- A Two patients from real-world data ORR and CR were **JULY 2014** compared using odds Randomly selected ratio. OS, PFS and LoT 1 LoT 2 LoT 3 Not selected INDEX DATE NTES were evaluated using Kaplan-Meier × analysis LoT 1 LoT 2 LoT 3 LoT 4
 - Subgroup analyses were conducted on patients who initiated $>4^{th} I o T$

143 patients were identified in SCHOLAR-5, reducing to a weighted sum of 85 after applying propensity score
weights, versus 86 patients in ZUMA-5

Median follow-up time for ZUMA-5 and SCHOLAR-5 were 29.4 and 26.2 months respectively

		SCHOLAR-5 before weighting (n = 143)	ZUMA-5 (n = 86)	SCHOLAR-5 after weighting (n = 85)	SMD (p-value)
Median age (ra	inge), years	64 (36 – 89)	62 (34 – 79)	61 (36 – 89)	0.036 (.85)
Male, n (%)		81 (56.6%)	48 (55.8%)	53 (61.9%)	0.123 (.46)
POD24, n (%)		51 (35.7%) 49 (57.0%)		47 (55.9%)	0.022 (.90)
Prior lines of th	nerapy, median (range)	2 (2-8)	3 (2-9)	3 (2-8)	0.047 (.81)
Refractory to p	rior line, n (%)	87 (60.6%)	63 (73.3%)	65 (76.6%)	0.077 (.61)
Prior SCT, n (%)		31 (21.7%)	21 (24.4%)	24 (28.0%)	0.080 (.64)
Size of largest I	nodal mass (cm)*	4.16 (2.75 – 6.50)	4.35 (3.27 – 6.43)	4.02 (2.90 – 6.25)	0.094 (.59)
Time since last	therapy (months)*	6.76 (1.16 – 22.66)	3.53 (1.77 – 9.01)	2.30 (0.69-7.99)	0.056 (.67)
Time since diagnosis (months)*		84.79 (52.99– 130.47)	59.86 (35.10– 96.62)	64.55 (40.96 – 115.79)	0.100 (.52)
ECOG, n (%):	0	39 (33.1%)	51 (59.3%)	21 (29.0%)	0.640 (.002)
	1	79 (66.9%)	35 (40.7%)	51 (71.0%)	

Variables that were successfully balanced (SMD <0.1) included POD24, number of prior LoT, relapsed vs refractory, prior stem cell transplant, size of largest nodal mass, response to prior LoT, time since last therapy and age

٠

LEUKEMIA2022 May 5-6, 2022 All President: P. Toro Coordinators: A.M. Carella, S. Amadori

AlL President: P. Toro Coordinators: A.M. Carella, S. Amadori

		SCHOLAR-5	ZUMA-5	Odds ratio	P value
Primary analysis:	ORR	42/85 (49.9%)	81/86 (94.2 %)	16.2 (5.6, 46.9)	< .001
≥ 3rd LoT	CR	25/85 (29.9%)*	68/86 (79.1%)**	8.85 (4.3, 18.25)	< .001
Sub-group analysis:	ORR	24/59 (40.3%)	57/60 (95%)	28.14 (7.38, 107.33)	< .001
≥ 4th LoT	CR	12/59 (20.6%)*	48/60 (80%)	15.42 (5.82, 40.83)	< .001

Coordinators: A.M. Carella, S. Amadori

A. Overall Survival

B. Progression Free Survival

ZUMA-5: median OS not reached median PFS 39.6 m

SCHOLAR-5:

median OS 59,8 m median PFS 12,7 m

With the limits of a retrospective analisys:

- Analysis of real-world outcomes shows poor clinical outcomes that worsen with increasing LoT
- Axi-cel demonstrated a clinically and statistically significant improvement in ORR and CR, as well as PFS and OS
- CAR-T address an important unmet medical need for r/r FL patients

CAR-T in iNHL *conclusive remarks*:

iNHL: long survival, easy to re induce after multiple lines, multiple effective approaches.. CAR-t perceived as less important than in aggressive NHL, but:

- Data swow higher efficacy over standard of care
- Side effects manageable

High risk iNHL (POD24): Unmet clinical need, in wich CAR-t can play an important role. ASCT still employed in this setting, the experience in DLCL shows a possible higher efficacy of CAR-T.

Today, in a policy of conservative treatment of iNHL, CAR-T represent a relevant step forward in R/R disease.

Tomorrow, if we move to the objective of iNHL eradication in a subset of young patients, could be reasonable to test CAR-T or new immunotherapy strategies even in the context of first line, as attempted in aggressive NHL (ZUMA12)

AlL President: P. Toro Coordinators: A.M. Carella, S. Amadori

